Sealed-Bid Batch Swaps

ZSwap’s sealed-bid batch swaps conceptually decompose into two parts: the DEX and AMM mechanism itself, and the batching procedure, which allows multiple users’ swaps to be batched into a single trade executed against the trading function. This section focuses on the batching procedure, leaving the mechanics of the trading function for later.

A key challenge in the design of any private swap mechanism is that zero-knowledge proofs only allow privacy for user-specific state, not for global state, because they don’t let you prove statements about things that you don’t know. While users can prove that their user-specific state was updated correctly without revealing it, they cannot do so for other users’ state.

Instead of solving this problem, ZSwap sidesteps the need for users to do so. Rather than have users transact with each other, the chain permits them to transmute one asset type to another, provably updating their private state without interacting with any other users’ private state. To do this, they privately burn their input assets and encrypt the amounts to the validators. The validators aggregate the encrypted amounts and decrypt the batch total, then compute the effective (inclusive of fees) clearing prices and commit them to the chain state. In any later block, users can privately mint output funds of the new type, proving consistency with the inputs they burned.

Swap actions

First, users create transactions with Swap actions that privately burn their input assets and encrypt the amounts to the validators. This action identifies the trading pair by asset id, consumes of types from the transaction balance, and contains an encryption of the trade inputs Rational traders will choose either or , i.e., trade one asset type for the other type, but the description provides two inputs so that different swap directions cannot be distinguished. The Swap action also consumes fee tokens from the transaction’s value balance, which are saved for use as a prepaid transaction fee when claiming the swap output.

To record the user’s contribution for later, the action mints a swap NFT. Penumbra assets are recorded as a pair of an amount (u64) and an asset id (). Usually, the asset id is the hash of a denomination string. For a swap NFT, however, the asset id is computed as where:

  • is a Poseidon hash function;
  • are the input amounts of types and respectively;
  • is a prepaid fee amount that will be used for the swap claim;
  • and are the diversified basepoint and diversified transmission key of one of the user’s addresses, used to preauthorize the swap claim.

The swap NFT is recorded like any other asset in the shielded pool. The Swap action includes a NotePayload with an encryption of a new note with the swap NFT, rather than using a separate Output action, in order to combine proof statements and skip a fixed-size memo field.

Batching and Execution

In this description, which focuses on the state model, we treat the execution itself as a black box and focus only on the public data used for swap outputs.

Validators sum the encrypted amounts of all swaps in the batch to obtain an encryption of the combined inputs , then decrypt to obtain the batch input without revealing any individual transaction’s input . Then they execute against the trading pool, updating the pool state and obtaining the effective (inclusive of fees) clearing prices ( in terms of ) and ( in terms of ). Alternatively, the swap could fail, for instance, because there is insufficient liquidity, so the public state recording the swap results also includes a success bit that is on success and on failure.

Each user’s output amounts can be computed as which simplifies to when the batch succeeds and , or to when the batch fails and .

Claiming Swap Outputs

In a future block, users who created transactions with Swap actions obtain assets of the new types by creating a transaction with SwapClaim actions. This action privately mints new tokens of the output type, and proves consistency with the user’s input contribution (via the swap NFT) and with the effective clearing prices (which are part of the public chain state). The SwapClaim action is carefully designed so that it is self-authenticating, and does not require any spend authorization. Any entity in posession of the full viewing key can create and submit a swap claim transaction, without further authorization by the user. This means that wallet software can automatically claim swap outputs as soon as it sees confirmation that the swap occurred.

Like a Spend action, the SwapClaim action spends a shielded note, revealing its nullifier and witnessing an authentication path from it to a recent anchor. However, it differs in several important respects:

  • Rather than unlocking value from an arbitrary note, it proves that the spent note records unit of a swap NFT whose asset ID is so that the input state is available to other proof statements;

  • Rather than witnessing the full authentication path from the note commitment up to a recent anchor, it reveals the block height and only witnesses the authentication path up to the block-level root, proving that the note was included in a particular block1, and allowing reference to the effective clearing prices and ;

  • Rather than contributing to the transaction’s value balance, it constructs two output notes itself, one for each of and proves that the notes are sent to the address committed to by the and in the swap NFT;

The SwapClaim does not include a spend authorization signature, because it is only capable of consuming a swap NFT, not arbitrary notes, and only capable of sending the trade outputs to the address specified during construction of the original Swap action, which is signed.

Finally, the SwapClaim releases units of the fee token to the transaction’s value balance, allowing it to pay fees without an additional Spend action. The transaction claiming the swap outputs can therefore consist of a single SwapClaim action, and that action can be prepared using only a full viewing key. This design means that wallet software can automatically submit the swap claim without any explicit user intervention, even if the user’s custody setup (e.g., a hardware wallet) would otherwise require it.

Although sweep descriptions do not reveal the amounts, or which swap’s outputs they claim, they do reveal the block and trading pair, so their anonymity set is considerably smaller than an ordinary shielded value transfer. For this reason, client software should create and submit a transaction with a sweep description immediately after observing that its transaction with a swap description was included in a block, rather than waiting for some future use of the new assets. This ensures that future shielded transactions involving the new assets are not trivially linkable to the swap.

Privacy for Market-Takers

This design reveals only the net flow across a trading pair in each batch, not the amounts of any individual swap. However, this provides no protection if the batch contains a single swap, and limited protection when there are only a few other swaps. This is likely to be an especially severe problem until the protocol has a significant base of active users, so it is worth examining the impact of amount disclosure and potential mitigations.

  • TODO: on the client side, allow a “time preference” slider (immediate vs long duration), which spreads execution of randomized sub-amounts across multiple blocks at randomized intervals within some time horizon

  • TODO: extract below into separate section about privacy on penumbra

Assuming that all amounts are disclosed, an attacker could attempt to deanonymize parts of the transaction graph by tracing amounts, using strategies similar to those in An Empirical Analysis of Anonymity in Zcash. That research attempted to deanonymize transactions by analysing movement between Zcash’s transparent and shielded pools, with some notable successes (e.g., identifying transactions associated to the sale of stolen NSA documents). Unlike Zcash, where opt-in privacy means the bulk of the transaction graph is exposed, Penumbra does not have a transparent pool, and the bulk of the transaction graph is hidden, but there are several potential places to try to correlate amounts:

  • IBC transfers into Penumbra are analogous to t2z transactions and disclose types and amounts and accounts on the source chain;
  • IBC transfers out of Penumbra are analogous to z2t transactions and disclose types and amounts and accounts on the destination chain;
  • Each unbonding discloses the precise amount of newly unbonded stake and the validator;
  • Each epoch discloses the net amount of newly bonded stake for each validator;
  • Liquidity pool deposits disclose the precise type and amount of newly deposited reserves;
  • Liquidity pool deposits disclose the precise type and amount of newly withdrawn reserves;

The existence of the swap mechanism potentially makes correlation by amount more difficult, by expanding the search space from all amounts of one type to all combinations of all amounts of any tradeable type and all historic clearing prices. However, assuming rational trades may cut this search space considerably.2


Thanks to Guillermo Angeris for this observation.


Technically, this is not quite true: by itself, all that revealing the block-level root on the authentication path proves is that the note was included in a block with that root, not the block with that root, since the block root binds all of the new note commitments produced in that block but does not explicitly bind the block height. To fix this, we can have the chain insert a dummy note whose note commitment is bound to the block height (e.g., by computing the note’s blinding factor as a hash of the height). This prevents a possible attack where an attacker who could control the exact set of note commitments included in two different blocks at heights and , both with swaps, could submit the exact same input amounts in and (without change), and then claim both outputs at whichever executed with a higher price.